

Extra Mathematical Notes for Lectures and Classes*

Parley Ruogu Yang[†]

This version: Friday 4th March, 2022

Abstract

This document consists of notes for Lectures (section 2) and Classes (section 3).

Contents

1 General notes	3
1.1 Notations	3
1.2 Activation functions	3
2 Lectures	4
2.1 Lectures 3 and 4: Basic optimisation methods	4
2.1.1 Gradient Descent in general	4
2.1.2 Gradient Descent in the ERM framework	4
2.1.3 Stochastic Gradient Descent	4
2.1.4 Momentum	5
2.2 Lecture 4: Adaptive Learning Rates	5
2.2.1 General notions	5
2.2.2 Adagrad	5
2.2.3 RMSProp	5
2.2.4 Adam	6
2.3 Lecture 4: Dropout	6
2.4 Lecture 5: Convolutional Neural Networks	6
3 Classes	7
3.1 Class 1: Linear and logistic regressions	7
3.1.1 Linear regression and MSE loss	7
3.1.2 Gradient of linear regression with MSE loss	7
3.1.3 Logistic regression model and binary cross entropy	7
3.2 Class 2: Perceptron and the XOR Problem	8
3.2.1 Perceptron	8
3.2.2 The XOR Problem statement	8
3.2.3 Theoretical result	8

*Latest version: <https://parleyyang.github.io/ST456/index.html>

[†]Faculty of Mathematics, University of Cambridge

3.3	Class 3: Options Pricing	9
3.3.1	Background	9
3.3.2	Class 3 Notebook 1	9
3.3.3	Class 3 Notebook 2	9
3.3.4	Class 3 Homework	9

1 General notes

1.1 Notations

The default meaning of \mathbb{N} is the set of integers greater or equal to 1. For $n \in \mathbb{N}$, denote $[n] := \{1, 2, \dots, n-1, n\} = [1, n] \cap \mathbb{N}$. When $x \in \mathbb{R}^n$ is written, x_i stands for the i -th entry of x . If $\rho : \mathbb{R} \rightarrow \mathbb{R}$ is well-defined, then for $y \in \mathbb{R}^n$, $\rho(y) := (\rho(y_1), \dots, \rho(y_n))$, also known as element-wise operation.

$N(\mu, \sigma^2)$ refers to a normal distribution with mean μ and variance σ^2 , while a standard normal distribution refers to the case when $\mu = 0$ and $\sigma^2 = 1$.

Where ε or ε_i are written, the default meaning is that they are drawn from iid $N(0, \sigma^2)$ distribution with σ^2 unknown.

NN stands for Neural Networks.

\odot stands for element-wise multiplication

1.2 Activation functions

Let $\rho^{\text{sigmoid}} : \mathbb{R} \rightarrow \mathbb{R}$ be the sigmoid function, it is defined by

$$x \mapsto (1 + \exp(-x))^{-1} \quad (1.2.1)$$

Let $\rho^{\text{thr}} : \mathbb{R} \rightarrow \mathbb{R}$ be the threshold function, it is defined by

$$x \mapsto \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{else} \end{cases} \quad (1.2.2)$$

This function is also commonly written as $\mathbb{1}[x \geq 0]$

Let $\rho^{\text{relu}} : \mathbb{R} \rightarrow \mathbb{R}$ be the ReLU (Rectified Linear Unit) function, it is defined by

$$x \mapsto \max\{0, x\} \quad (1.2.3)$$

Let $K \in \mathbb{N}$, $\rho^{\text{sm}} : \mathbb{R}^K \rightarrow (0, 1)^K$ be the softmax function, the i -th coordinate of the output $\rho(x)_i$ is defined by

$$x \mapsto \frac{e^{x_i}}{\sum_{j \in [K]} e^{x_j}} \quad (1.2.4)$$

2 Lectures

2.1 Lectures 3 and 4: Basic optimisation methods

2.1.1 Gradient Descent in general

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a differentiable function, a gradient descent sequence $\{x_n\}_{n=0}^{\infty}$ with learning rate scheduling $\{\eta_n\}_{n=0}^{\infty}$ and initialisation x_{ini} is defined as

$$x_0 = x_{ini} \tag{2.1.1}$$

$$x_n = x_{n-1} - \eta_{n-1} \nabla f(x_{n-1}) \quad \forall n \in \mathbb{N} \tag{2.1.2}$$

2.1.2 Gradient Descent in the ERM framework

In the framework of Empirical Risk Minimisation (ERM), we are in the business of solving

$$\min_f \mathbb{E}_{(x,y) \sim p_{data}} [L(f(x, \theta), y)] \tag{2.1.3}$$

where $f(x, \theta)$ is the predicted output when the input data is x . In parametric setting, we search over some parametric space $\theta \in \Theta$ (often $\Theta = \mathbb{R}^n$), but also note the minimisation over f applies in a more general setting, e.g. functional minimisation or hyper-parameter search. Write the (empirical) data as $D := \{(x_i, y_i) : i \in [M]\}$ where M is the sample size, and the distribution of empirical data as p_{data} . We note that $J(\theta)$ can be written as $M^{-1} \sum_{i \in [M]} L(f(x_i, \theta), y_i)$.

Let $\theta \in \mathbb{R}^n$ and $J(\theta) := \mathbb{E}_{(x,y) \sim p_{data}} [L(f(x, \theta), y)]$, then a batch / deterministic gradient descent method with learning rate scheduling $\{\eta_n\}_{n=0}^{\infty}$ and initialisation θ_{ini} is defined as

$$\theta_0 = \theta_{ini} \tag{2.1.4}$$

$$\theta_n = \theta_{n-1} - \eta_{n-1} \nabla_{\theta} J(\theta_{n-1}) \quad \forall n \in \mathbb{N} \tag{2.1.5}$$

2.1.3 Stochastic Gradient Descent

A Stochastic Gradient Descent (SGD) algorithm takes the average gradient on a minibatch of m examples drawn randomly from the data. Clearly, for m to make sense, we practically have $m \ll M$. On the other hand, when we have $m = M$, SGD is the same as GD.

A SGD algorithm with batch size m , learning rate scheduling $\{\eta_n\}_{n=0}^{\infty}$, and initialisation θ_{ini} is defined as

$$\theta_0 = \theta_{ini} \tag{2.1.6}$$

$$\theta_n = \theta_{n-1} - \eta_{n-1} m^{-1} \nabla_{\theta} \sum_{j \in [m]} L(f(\tilde{x}_j, \theta_{n-1}), \tilde{y}_j) \quad \forall n \in \mathbb{N} \tag{2.1.7}$$

where, $\forall n \in \mathbb{N}$, a set of data $\{(\tilde{x}_j, \tilde{y}_j) : j \in [m]\}$ is sampled from p_{data} uniformly.

Larger m provides a more accurate estimate of the gradient, but more computational costs¹ Training with small m may require a small learning rate may require a small learning rate to maintain stability due to high variance in the estimation of gradient.

¹In case of parallel computing, then memory scales with m , in case of sequential computing, the computational time scales with m .

2.1.4 Momentum

Based on subsubsection 2.1.3, we rewrite Equation 2.1.7 into the following two lines:

$$v_n = \eta_{n-1} m^{-1} \nabla_{\theta} \sum_{j \in [m]} L(f(\tilde{x}_j, \theta_{n-1}), \tilde{y}_j) \quad (2.1.8)$$

$$\theta_n = \theta_{n-1} - v_n \quad (2.1.9)$$

Now, a momentum method with initial velocity v_0 and momentum parameter α varies the above into

$$v_n = \alpha v_{n-1} - \eta_{n-1} m^{-1} \nabla_{\theta} \sum_{j \in [m]} L(f(\tilde{x}_j, \theta_{n-1}), \tilde{y}_j) \quad (2.1.10)$$

$$\theta_n = \theta_{n-1} + v_n \quad (2.1.11)$$

2.2 Lecture 4: Adaptive Learning Rates

2.2.1 General notions

General idea: adapt a separate learning rate (or momentum for Adam) for the update towards θ_n .

We reconsider the system as per Equation 2.1.8 and Equation 2.1.9 and introduce the following notation:

- Gradient $g_n := m^{-1} \nabla_{\theta} \sum_{j \in [m]} L(f(\tilde{x}_j, \theta_{n-1}), \tilde{y}_j)$
- Gradient accumulation variable $\{r_n\}_{n=0}^{\infty}$ where $r_0 = 0$
- $\delta \in [10^{-7}, 10^{-6}]$ for numerical stabilisation
- Decay rates $\rho, \rho_1, \rho_2 \in [0, 1)$

Also note that square roots and divisions are element-wise throughout this subsection.

2.2.2 Adagrad

In Adagrad (Adaptive Gradient Algorithm), we moderate Equation 2.1.8 and Equation 2.1.9 into:

$$r_n = r_{n-1} + g_n \odot g_n \quad (2.2.1)$$

$$\theta_n = \theta_{n-1} - \frac{\eta_{n-1}}{\delta + \sqrt{r_n}} \odot g_n \quad (2.2.2)$$

2.2.3 RMSProp

In RMSProp (Root Mean Square Propagation), we vary Equation 2.2.1 into

$$r_n = \rho r_{n-1} + (1 - \rho) g_n \odot g_n \quad (2.2.3)$$

2.2.4 Adam

In Adam (Adaptive Moment Estimation), we consider two moments: s_n and r_n respectively, with initialisation $s_0 = r_0 = 0$. We moderate Equation 2.1.8 and Equation 2.1.9 into:

$$s_n = (1 - \rho_1^n)^{-1}(\rho_1 s_{n-1} + (1 - \rho_1)g_n) \quad (2.2.4)$$

$$r_n = (1 - \rho_2^n)^{-1}(\rho_2 r_{n-1} + (1 - \rho_2)g_n \odot g_n) \quad (2.2.5)$$

$$\theta_n = \theta_{n-1} - \frac{\eta_{n-1}}{\delta + \sqrt{r_n}} \odot s_n \quad (2.2.6)$$

2.3 Lecture 4: Dropout

Suppose the input to a layer is $x \in \mathbb{R}^n$. Recall the definition of a layer with activation ρ is:

$$z = wx + b \quad (2.3.1)$$

$$y = \rho(z) \quad (2.3.2)$$

A Dropout layer with probability p for the same input and activation is described as, with $r := (r_1, \dots, r_n)$:

$$r_j \stackrel{iid}{\sim} \text{Bernoulli}(p) \quad \forall j \in [n] \quad (2.3.3)$$

$$z = w(r \odot x) + b \quad (2.3.4)$$

$$y = \rho(z) \quad (2.3.5)$$

2.4 Lectures 5 and 6: Convolutional Neural Networks (CNN)

Let K be a 4-D kernel tensor with element $K_{i,j,k,l}$ giving the connection strength between a unit in channel i of the output and a unit in channel j of the input, with k and l being the offset weights. Let V be the input with $V_{i,j,k}$ giving the value of the input unit with channel i at row j and column k . The output Z can be written as

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m,k+n} K_{i,l,m,n} \quad (2.4.1)$$

For instance, in class 5, we look at:

- CIFAR-10 problem where images are given as 32×32 pixel coloured photographs, hence $j = k = 32$ and $l = 3$
- The MNIST problem where images are given as 28×28 pixel bilevel, hence $j = k = 28$ and $l = 1$.

Let $s := (s_1, s_2)$ be the strides, then a downsampled convolution with s is defined as

$$Z_{i,j,k}(s) = \sum_{l,m,n} V_{l,j \times s_1 + m, k \times s_2 + n} K_{i,l,m,n} \quad (2.4.2)$$

Maximum Pooling is a commonly used layer in CNN to reduce spatial dimensions of our hidden representations. The mathematical representation varies by coding implementations, see <https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html> for example.

3 Classes

3.1 Class 1: Linear and logistic regressions

3.1.1 Linear regression and MSE loss

Let $x \in \mathbb{R}^m$ be the input variable. Let $y \in \mathbb{R}$ be the output variable.

We consider $y = f(x) + \varepsilon$ where $f(x) = x^T w + b$

If we have data $\{(x_i, y_i) : i \in [n]\}$, the MSE loss takes the following form:

$$l(w, b) = n^{-1} \sum_{i \in [n]} (y_i - f(x_i))^2 = n^{-1} \sum_{i \in [n]} (y_i - x_i^T w - b)^2 \quad (3.1.1)$$

3.1.2 Gradient of linear regression with MSE loss

It will be useful later in subsection 2.1 to have the gradient ∇l in hand. In particular:

$$\nabla_w l(w, b) = n^{-1} \sum_{i \in [n]} (2x_i)(f(x_i) - y_i) \quad (3.1.2)$$

$$\nabla_b l(w, b) = n^{-1} \sum_{i \in [n]} 2(f(x_i) - y_i) \quad (3.1.3)$$

3.1.3 Logistic regression model and binary cross entropy

Let ρ be the sigmoid function, then we consider $y = f(x) + \varepsilon$ where $f(x) = \rho(x^T w + b)$

In the event of binary classification problem, in which $y \in \{0, 1\}$, we clearly do not have ε as a Normally distributed error. In this occasion, with data $\{(x_i, y_i) : i \in [n]\}$, we consider the binary cross entropy as

$$l(f) = -n^{-1} \left(\sum_{i \in [n]} y_i \log(f(x_i)) + (1 - y_i) \log(1 - f(x_i)) \right) \quad (3.1.4)$$

3.2 Class 2: Perceptron and the XOR Problem

3.2.1 Perceptron

With an activation function $\rho : \mathbb{R} \rightarrow \mathbb{R}$ and a feature engineering ϕ , we have a single-layer NN as $x \mapsto \rho(\phi(x)^T w + b)$

For the rest of the class (as well as in the lecture), we ignore ϕ , or equivalently replace it by an identity map. A feed-forward NN with depth L can be written as

$$y = h_L \circ h_{L-1} \circ \dots \circ h_1(x) \quad (3.2.1)$$

where $h_l(x) = a_l(W^{(l-1)}x + b^{(l-1)})$ for all $l \leq L-1$ and $h_L(x) = W^{L-1}x + b^{L-1}$.

3.2.2 The XOR Problem statement

Consider $x \in \mathbb{R}^2$ and $y \in \mathbb{R}$, in particular, our data is as follows:

$$D = \{((-1, -1), -1), ((-1, 1), 1), ((1, -1), 1), ((1, 1), -1)\} \quad (3.2.2)$$

The objective is to separate the points, mathematically one uses

$$L(f) = \sum_{i \in [4]} \max(-y_i f(x_i), 0) \quad (3.2.3)$$

3.2.3 Theoretical result

Theorem 1 (Failure of linear functions compared against two-layer NN). *Let \mathcal{L} be the class of all non-zero linear functions $\mathbb{R}^2 \rightarrow \mathbb{R}$ and let*

$$\mathcal{N}(\rho) = \{f : \mathbb{R}^2 \rightarrow \mathbb{R} : f(x) = \rho(w_1 x + b_1)^T w_2 + b_2, w_1 \in \mathbb{R}^{2 \times 2}, w_2, b_1 \in \mathbb{R}^2, b_2 \in \mathbb{R}\} \quad (3.2.4)$$

where ρ is the threshold function. Then

$$\min_{f \in \mathcal{L}} L(f) > 0 = \min_{f \in \mathcal{N}(\rho)} L(f) \quad (3.2.5)$$

Proof. The left hand side can be proved by a 2-D diagram, or analytically via the diagram-induced geometry. The right hand side can be proved by showing an element $f \in \mathcal{N}(\rho)$ satisfies $L(f) = 0$, which is equivalent to show $y_i = f(x_i) \forall i$. Consider

$$\begin{aligned} b_1 &= (0, 0), b_2 = -1, w_2 = (-2, 2) \\ w_1 &= \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \end{aligned}$$

which offers one specification that works. \square

Remarks:

1. $\mathcal{N}(\rho)$ can also be thought as the class of all two-layer NNs with architecture as $(2, 2, 1)$ and activation function as the threshold function.
2. Note that the loss function can be 0 if $f(x_i) = 0 \forall i$. This is a bug of the loss function, hence when considering linear function, we restrict to the non-linear ones.

3.3 Class 3: Options Pricing

3.3.1 Background

A (European) call option at maturity T gives the owner the right to buy an underlying asset at strike price K . This price of such an option is denoted as $V(S_t, t; K)$ at time $t \in [0, T]$, where S_t is the price of the underlying asset at time t . It is natural to relate this to various parameters in the market: in the Black-Scholes model, we relate this to the interest rate r and volatility σ . A PDE expression is provided as

$$\partial_t V + rS\partial_S V + \frac{1}{2}\sigma^2 S^2 \partial_S^2 V = rV \quad (3.3.1)$$

The solution of this is complicated and non-linear:

$$V(S_t, t; K) = S_t N(d_1) - K e^{r(T-t)} N(d_2) \quad (3.3.2)$$

where $d_1 = (\sigma\sqrt{T-t})^{-1}(\log(S_t K^{-1}) + (r + \frac{\sigma^2}{2}(T-t)))$ and $d_2 = d_1 - \sigma\sqrt{T-t}$

3.3.2 Class 3 Notebook 1

In this notebook, we keep other parameters the same and study the relationship between strike price K and the associated price of call option V . In particular, we select a number of strike prices, denoted $x_1, \dots, x_n \in \mathbb{R}$ and generate the call option prices $y_1, \dots, y_n \in \mathbb{R}$ in accordance with Equation 3.3.2. The dataset is hence $\{(x_i, y_i) : i \in [n]\}$ and that we would like to approximate a function $f : \mathbb{R} \rightarrow \mathbb{R}$ as we generate our data $y_i = f(x_i) \ \forall i$

3.3.3 Class 3 Notebook 2

In practice, one would be asked for the implied volatility σ given the data they receive — in this notebook, we fix 16 different strike prices and collect their corresponding call prices: for now, assume no noise. Then, for each $y_i = \sigma_i \in \mathbb{R}$, we have a 16-dimensional data $x_i \in \mathbb{R}^{16}$, so the dataset is $\{(x_i, y_i) : i \in [n]\}$ and that we would like to approximate a function $f : \mathbb{R}^{16} \rightarrow \mathbb{R}$ as we generate our data $y_i = f(x_i) \ \forall i$

3.3.4 Class 3 Homework

Realistically, the data contains noise. In the Homework, we will work with noisy data, in particular, we consider the same function $f : \mathbb{R}^{16} \rightarrow \mathbb{R}$ as was in Notebook 2, but that we generate $\varepsilon_i \sim N(0_{16}, \sigma^2 I_{16 \times 16}) \forall i \in [n]$, and observe $\tilde{x}_i = \max\{x_i + \varepsilon_i, 0\}$ instead of x_i . The maximum is in place because the practical world would not accept a negative prices on an option — so whilst there are noises, there is an obvious truncation.

So, we are still in the business of approximating f , but this time we have data $\{(\tilde{x}_i, y_i) : i \in [n]\}$.