Extra Mathematical Notes for Lectures and
Classes®

Parley Ruogu Yang'

This version: Friday 4" March, 2022

Abstract

This document consists of notes for Lectures (section 2)) and Classes
(Section 3).

Contents

2.1 Lectures 3 and 4: Basic optimisation methods|.

2.1.1 Gradient Descent in general|

222 Adagrad|.
2.2.3 RMSPropl oo
224 Adan

2.3 Lecture 4: Dropout|. Lo
2.4 Lecture 5: Convolutional Neural Networks|

B—Classes

8.1 Class 1: Linear and logistic regressions|
3.1.1 Linear regression and MSE loss[.

3.1.2 radient of linear regression wit oss|
|3.1.3 Logistic regression model and binary cross entropy|
3.2 ass 2: Perceptron and the roblem|

3.2.1 Perceptron| oL

*Latest version: https://parleyyang.github.io/ST456/index.html
TFaculty of Mathematics, University of Cambridge

S O O UL UL UL Ut Ut

00 00 00 00 =1 ~ ~J ~I

https://parleyyang.github.io/ST456/index.html

[3.3 Class 3: Options Pricing|

3.3.1 ackground|o

1 General notes

1.1 Notations

The default meaning of N is the set of integers greater or equal to 1. For n € N|
denote [n] := {1,2,....,n — 1,n} = [1,n] N N. When = € R" is written, z;
stands for the i-th entry of z. If p : R — R is well-defined, then for y € R",
o(y) := (p(y1), ..., p(yn)), also known as element-wise operation.

N (u,0?) refers to a normal distribution with mean p and variance o2, while
a standard normal distribution refers to the case when p = 0 and o2 = 1.

Where € or ¢; are written, the default meaning is that they are drawn from
iid N(0,0?) distribution with ¢ unknown.

NN stands for Neural Networks.

® stands for element-wise multiplication

1.2 Activation functions

Let psi&™id : R — R be the sigmoid function, it is defined by
x> (1 +exp(—z))~* (1.2.1)

Let p®* : R — R be the threshold function, it is defined by

0 ifx<0
s s (1.2.2)
1 else

This function is also commonly written as 1[z > 0]
Let p*** : R — R be the ReLU (Rectified Linear Unit) function, it is defined
by
x +— max{0,z} (1.2.3)

Let K € N, p5": RE — (0,1)X be the softmax function, the i-th coordinate
of the output p(x); is defined by
evi
T (1.2.4)
2 jelr €

2 Lectures

2.1 Lectures 3 and 4: Basic optimisation methods
2.1.1 Gradient Descent in general

Let f : R® — R be a differentiable function, a gradient descent sequence
{zn}52, with learning rate scheduling {7, }°2 , and initialisation x;y; is defined
as

To = Tini (2~1~1)
Tp = Tp—1 — nn—lvf(xn—l) Vn €N

2.1.2 Gradient Descent in the ERM framework

In the framework of Empirical Risk Minimisation (ERM), we are in the business
of solving

m}n E(Ivy)"‘pdata [L(f(.%‘, 9)7 y)] (2-1'3)

where f(x,0) is the predicted output when the input data is z. In parametric
setting, we search over some parametric space 8 € © (often ©=R"), but also
note the minimisation over f applies in a more general setting, e.g. functional
minimisation or hyper-parameter search. Write the (empirical) data as D :=
{(x4,y:) : i € [M]} where M is the sample size, and the distribution of empirical
data as pgata- We note that J(6) can be written as M ! e LUf (i, 0), yi) -

Let 0 € R™ and J(0) := E(y)opuoia [L(f(2,0),y)], then a batch / deter-
ministic gradient descent method with learning rate scheduling {n,}5>, and
initialisation 6;,,; is defined as

o = Oini (2.1.4)
0p=0,_1— nn_1V9J(9n_1) Vn € N

2.1.3 Stochastic Gradient Descent

A Stochastic Gradient Descent (SGD) algorithm takes the average gradient on
a minibatch of m examples drawn randomly from the data. Clearly, for m to
make sense, we practically have m << M. On the other hand, when we have
m = M, SGD is the same as GD.

A SGD algorithm with batch size m, learning rate scheduling {7, }°2, and
initialisation 6;,,; is defined as

0o = Oini (2.1.6)
0, =0,_1— nn_lm_1V9 Z L(f(f77 Hn_l),gjj) Vn € N (2.1.7)

J€[m]

where, Vn € N, a set of data {(£},y;) : j € [m]} is sampled from pgq¢, uniformly.

Larger m provides a more accurate estimate of the gradient, but more com-
putational cost&ﬂ Training with small m may require a small learning rate may
require a small learning rate to maintain stability due to high variance in the
estimation of gradient.

11n case of parallel computing, then memory scales with m, in case of sequential computing,
the computational time scales with m.

2.1.4 Momentum
Based on [subsubsection 2.1.3] we rewrite into the following two

lines:

Un =Np1m ™'V Y L(f(£},00-1), ;) (2.1.8)

J€[m]

Op =0n_1 — (2.1.9)

Now, a momentum method with initial velocity vy and momentum parameter
« varies the above into

Un =QUp—-1 — nn—lm_lv9 Z L(f(fjaan—1)7y~_]) (2110)

J€[m]
0, =0,_1+ v, (2.1.11)

2.2 Lecture 4: Adaptive Learning Rates
2.2.1 General notions

General idea: adapt a separate learning rate (or momentum for Adam) for the
update towards 6,,.

We reconsider the system as per |[Equation 2.1.8| and [Equation 2.1.9| and
introduce the following notation:

e Gradient g, :=m~'V, > jerm LU (Z5,0n-1),95)

e Gradient accumulation variable {r,}°2, where ro =0

e § € [1077,1079] for numerical stabilisation

e Decay rates p, p1,p2 € [0,1)
Also note that square roots and divisions are element-wise throughout this sub-
section.
2.2.2 Adagrad

In Adagrad (Adaptive Gradient Algorithm), we moderate [Equation 2.1.8[and
into:

Tn =Tn—1+gn O gn (2.2.1)
nn—l

0,=0,_1— ——— n 2.2.2

iy Y (2:2.2)

2.2.3 RMSProp
In RMSProp (Root Mean Square Propagation), we vary [Equation 2.2.1|into

Tn = pro—1+ (1 = p)gn © gn (2.2.3)

2.2.4 Adam

In Adam (Adaptive Moment Estimation), we consider two moments: s, and 7,
respectively, with initialisation sy = ro = 0. We moderate and
into:

Sn :(1 - p?)il(plsn—l + (1 - pl)gn) (224)
rn =(1=p5) " (parn—1+ (1 = p2)gn © gn) (2.2.5)
0, =01 — "L o5, (2.2.6)

2.3 Lecture 4: Dropout

Suppose the input to a layer is z € R™. Recall the definition of a layer with
activation p is:

z=wr+b (2.3.1)
y=p(2) (232)

A Dropout layer with probability p for the same input and activation is
described as, with r := (11, ..., 7):

T d Bernoulli(p) Vj € [n] (2.3.3)
z=w(roz)+b (2.3.4)
y = p(2) (2.3.5)

2.4 Lectures 5 and 6: Convolutional Neural Networks
(CNN)

Let K be a 4-D kernel tensor with element K; ; . ; giving the connection strength
between a unit in channel i of the output and a unit in channel j of the input,
with k£ and [being the offset weights. Let V' be the input with V; ;i giving the
value of the input unit with channel ¢ at row j and column k. The output Z
can be written as
Zi,j,k = Z W,j+m,k+nKi,l,m,n (241)
l,m,n

For instance, in class 5, we look at:

e CIFAR-10 problem where images are given as 32 x 32 pixel coloured
photographs, hence j =k =32 and [=3

e The MNIST problem where images are given as 28 x 28 pixel bilevel,
hence j =k =28 and [= 1.

Let s := (s1, $2) be the strides, then a downsampled convolution with s is
defined as
Zi,j,k(s) = Z W,jxsl+m,kX52+nKi,l,m,n (242)
lm,n

Maximum Pooling is a commonly used layer in CNN to reduce spatial dimen-
sions of our hidden representations. The mathematical representation varies by
coding implementations, see https://pytorch.org/docs/stable/generated/
torch.nn.MaxPool2d.html for example.

https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

3 Classes

3.1 Class 1: Linear and logistic regressions
3.1.1 Linear regression and MSE loss

Let z € R™ be the input variable. Let y € R be the output variable.
We consider y = f(x) + ¢ where f(z) = 27w +b
If we have data {(x;,y;) : @ € [n]}, the MSE loss takes the following form:

(w,b) =n"" Y (yi— f@)? =n""> (yi — 2] w—1b)? (3.1.1)
]

i€[n] i€[n

3.1.2 Gradient of linear regression with MSE loss
It will be useful later in to have the gradient VI in hand. In

particular:

Vil (w,b) =0~ > " (2a) (f (1) — w) (3.1.2)
1€[n]

Vol (w,b) =n~" Z 2(f(zi) —yi) (3.1.3)
1€[n]

3.1.3 Logistic regression model and binary cross entropy

Let p be the sigmoid function, then we consider y = f(x) + ¢ where f(z) =
p(zTw +b)

In the event of binary classification problem, in which y € {0, 1}, we clearly
do not have ¢ as a Normally distributed error. In this occasion, with data
{(zi,v:) : ¢ € [n]}, we consider the binary cross entropy as

() ==n"" [D wilog(f(:) + (1 —yi) log(1 — f(x2)) (3.1.4)
i€[n]

3.2 Class 2: Perceptron and the XOR Problem
3.2.1 Perceptron

With an activation function p : R — R and a feature engineering ¢, we have a
single-layer NN as z +— p(¢(z)Tw + b)

For the rest of the class (as well as in the lecture), we ignore ¢, or equivalently
replace it by an identity map. A feed-forward NN with depth L can be written
as

y:hLOhL_lo...Ohl(I) (321)

where hy(z) = ay(W Dz 400D for all] < L—1 and hy(z) = WE e 4571,

3.2.2 The XOR Problem statement

Consider z € R? and y € R, in particular, our data is as follows:

D= {((_1’ _1)7 _1)’ ((_17 1)7 1)7 ((17 _1)1 1)7 ((17 1)7 _1)} (3'2‘2)
The objective is to separate the points, mathematically one uses
L(f) =) max(~yf(z:),0) (3.2.3)
1€[4]
3.2.3 Theoretical result

Theorem 1 (Failure of linear functions compared against two-layer NN). Let
L be the class of all non-zero linear functions R> — R and let

N(p)={f :R* 5 R: f(z) = pwrz+b1) wotba, w1 € R**? wy, by € R%, by € R}
(3.2.4)
where p is the threshold function. Then

min L(f) > 0 = min L(f) (3.2.5)

Proof. The left hand side can be proved by a 2-D diagram, or analytically via the
diagram-induced geometry. The right hand side can be proved by showing an
element f € N (p) satisfies L(f) = 0, which is equivalent to show y; = f(z;)Vi.
Consider

bl = (0,0),b2 = —1,’LU2 = (—2,2)
|11
1= 2
which offers one specification that works. O

Remarks:

1. N(p) can also be thought as the class of all two-layer NNs with architecture
as (2,2,1) and activation function as the threshold function.

2. Note that the loss function can be 0 if f(x;) = 0Vi. This is a bug of the
loss function, hence when considering linear function, we restrict to the
non-linear ones.

3.3 Class 3: Options Pricing
3.3.1 Background

A (European) call option at maturity T gives the owner the right to buy an
underlying asset at strike price K. This price of such an option is denoted as
V (S, t; K) at time ¢t € [0,7], where S; is the price of the underlying asset at
time t. It is natural to relate this to various parameters in the market: in the
Black-Scholes model, we relate this to the interest rate r and volatility . A
PDE expression is provided as

OV +rSosV + %UQSQQ%V =7V (3.3.1)

The solution of this is complicated and non-linear:
V(Sy,t; K) = S;N(dy) — Ke"T=Y N (dy) (3.3.2)
where dy = (ov/T —)~ (log(S; K1) + (r + % (T —t)) and dy = dy — o/T —

3.3.2 Class 3 Notebook 1

In this notebook, we keep other parameters the same and study the relationship
between strike price K and the associated price of call option V' . In particular,
we select a number of strike prices, denoted z1,...,x, € R and generate the
call option prices yy, ..., yn € R in accordance with The dataset
is hence {(z;,y;) : i € [n]} and that we would like to approximate a function
f: R — R as we generate our data y; = f(x;) Vi

3.3.3 Class 3 Notebook 2

In practice, one would be asked for the implied volatility ¢ given the data they
receive — in this notebook, we fix 16 different strike prices and collect their
corresponding call prices: for now, assume no noise. Then, for each y; = 0; € R,
we have a 16-dimensional data z; € R, so the dataset is {(z;,%;) : i € [n]} and
that we would like to approximate a function f : R'® — R as we generate our
data y; = f(x;) Vi

3.3.4 Class 3 Homework

Realistically, the data contains noise. In the Homework, we will work with
noisy data, in particular, we consider the same function f : R'® — R as was in
Notebook 2, but that we generate &; ~ N(015,0%I16x16)Vi € [n], and observe
Z; = max{z; + &;,0} instead of z;. The maximum is in place because the
practical world would not accept a negative prices on an option — so whilst
there are noises, there is an obvious truncation.

So, we are still in the business of approximating f, but this time we have

data {(£;,vy;) : i € [n]}.

	General notes
	Notations
	Activation functions

	Lectures
	Lectures 3 and 4: Basic optimisation methods
	Gradient Descent in general
	Gradient Descent in the ERM framework
	Stochastic Gradient Descent
	Momentum

	Lecture 4: Adaptive Learning Rates
	General notions
	Adagrad
	RMSProp
	Adam

	Lecture 4: Dropout
	Lecture 5: Convolutional Neural Networks

	Classes
	Class 1: Linear and logistic regressions
	Linear regression and MSE loss
	Gradient of linear regression with MSE loss
	Logistic regression model and binary cross entropy

	Class 2: Perceptron and the XOR Problem
	Perceptron
	The XOR Problem statement
	Theoretical result

	Class 3: Options Pricing
	Background
	Class 3 Notebook 1
	Class 3 Notebook 2
	Class 3 Homework

