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1 Syllabus

Note: due to time constraint, we need to choose either §1.4 or §1.5 to be taught:
if §1.1 takes less time, i.e. that the students are comfortable with the basics
of analysis, then §1.5 could be introduced without much of a difficulty, and
the extra hour would be taken from §1.2 due to assumed level of familiarity on
Euclidean space operations. Otherwise it is recommended to go through §1.4
instead of §1.5.

In 2022, students unanimously voted for §1.5 for their interests in infinity
and their strength in basic analysis.

1.1 Real Analysis and Optimisation (4-6 hours)

Objective: we would like to re-visit the basic R™ — R analysis followed by a
rigorous treatment on convex optimisation. This leads us to gradient methods
and eventually end on a proof of convergence of GD on convex functions.

1. Convergence, divergence, limits, derivatives in univariate and multivariate
settings

2. Convex optimisation

3. Gradient Methods and Gradient Descent

1.2 Statistics and motivation of Machine Learning (4-5
hours)

Objective: we start by analysing the Gaussian distribution and linear models to
give a proper overview of the basic linear modelling — this then extends to the
likelihood method and motivates the use of Machine Learning to solve various
problems. We end on the design of loss function and followed by computing
experiments.

1. Random variable, Gaussian distribution, moments
2. Linear models, likelihood methods
3. Classification problem vs regression problem: loss function design

4. Neural Networks and algorithms

1.3 Computing experiments and basic Machine Learning
(4-5 hours)

Objective: we apply what we have learnt into computer programmes: we code
to implement certain model and optimisation, and observe the results. Further
remarks are made about the optimisation parts of Machine Learning.

1. Basics of programming
2. Implementing a model

3. Optimisations in action



4. The principle of Machine Learning

5. Penalisation

1.4 Modern Machine Learning (2-3 hours)

Objective: we explore various topics in modern machine learning — this could
lead to courses such as ST456 at LSE or various Part II and Part III courses at
Cambridge.

1. Neural Networks and towards Deep Learning
2. Modern topics in Al: image classification, time series forecasting, and high-

dimensional statistics

1.5 More on infinity and towards Modern Machine Learn-
ing (3-5 hours)

Objective: we explore the analysis of “infinite dimensional spaces”. Indeed,
what is infinite dimensional? Analysis starts with the notion of infinity, but
what is the ultimate infinity when we have the dimension of a space to be
infinite? Machine Learning related extensions are then brought in.

1. From Euclid to Hilbert: order and disorder in infinite dimensional spaces

2. Reproducible Kernel Hilbert Space



2 Real Analysis and Optimisation

2.1 Sequential Analysis

Definition 2.1. A real sequence {z, },cn is convergent to C' € R if
Ve >0, IN € N such that |z, —C|<eVn>N (1)

We note lim,,_, o x,, = C' or equivalently x,, — C in this case.
n—oo

1 is convergent.

Example 2.2. z, =n~
Exercise 2.3. Prove

e 1, = n® is convergent for all a < 0.

e 1, = n is not convergent.

e z, =log(n) is not convergent.
Definition 2.4. A real sequence {z, },cn is divergent to oo if

VC € R,3N €N, suchthatz, >C Vn>N (2)

We note lim,, o ,, = 00 in this case.
Exercise 2.5. Prove

e x, =n is divergent.

e 1, = log(n) is divergent.

State the definition of lim,,_ oo Z, = —00

2.2 Analysis of real functions

Definition 2.6. Let f : R — R. Let y € R. Then we write C' = lim,_,, f(z) if
Ve >0,30 >0 suchthat VzeR, |[z—y|<d = |f(z)-C|<e (3)

Example 2.7. Let f(z) =z, then lim,_,, f(z) =y Vy e R

Definition 2.8. Let f: R — R. Let C € R. Then we write C' = lim,_, f(x)

! Ve >0,30 >0 suchthat VzeR, z>d§ = |f(x)—-C|<e (4)

Example 2.9. Let f(x) = 27, then lim, o f(z) =0

Exercise 2.10.

e Let a € R be a parameter. Deﬁneﬂ f(z;a) = x®. Prove that lim,_, f(z;a) €
R if and only if a <0,

e With reference to the definition of sequential divergence, state the defini-
tion of lim,_, f(z) = 00

IRemark about the notation on variable and parameter: here, x is a variable and a is a
parameter, separated by the semicolon.



Definition 2.11. Let f : R — R. Let y € R. We say f is differentiable at y
and that f/(y) = C if
5) —
6—0 1)

Let A be aset. If fis differentiable on all y € A, then f is said to be differentiable
in A. If there exists y € A such that f is not differentiable on y, then f is said
to be not differentiable in A.

We define f(2) to be the derivative of f’, and f*) to be the derivative of

F*=D for all k € N>o and so on. When f*) is differentiable in A, we say f is
k-th differentiable.

Example 2.12. Let f(z) = 2% a > 0, then f'(z) = 297!
Exercise 2.13. Let f(z) = |x|. Show f is not differentiable in R.

Exercise 2.14. Fix an arbitrary k € N. Construct a function f : R — R such
that f(*® is differentiable in R but f*+1) is not.

Definition 2.15. Let k£ € R. 1 denotes an indicator function, that is

1 fz>k
0 else

n[x>k]={ (6)

Exercise 2.16. Prove that, for any k € R, 1[z > k] is not differentiable in R.

Theorem 2.1. Consider differentiable functions f,g : R — R andleth: R — R
be defined by x — g(f(x)). Then

W(z) = f'(z)g' (f(x)) (7)
Exercise 2.17. Considei]

F @ 1,0) = (0V/27) L exp (; (za“>2> ®)

where 1 € R and o > 0 are parameters.

e Show that f'(z) = (“QI) f(z)

o

e Hence show that f(¥) is differentiable for all k

Definition 2.18. Let F : R — R be twice differentiable. Then

F(z)= / F'(t)dt (9)
We write [* F'(t)dt as limg_,o0 F(2). It is also common to write this object
as [p F'(t)dt.

Note: while the above definition is true, there is a more general definition of
integration — it can be even more interesting to study that under a historical
context! That is, however, not further elaborated as we need to move on to
optimisation.

2This is a very interesting function — we will come back to that again in Statistics



Exercise 2.19. Let a € R and f: R — R. Prove

/Rxf(:z:)dx > a/aoo f(a)dz (10)

Definition 2.20. Let f : R" — R. Annotate z := (z1,...,2,) € R, and e,
as the m-th canonical basis vector in R", namely e,, = (0,...,0,1,0,...,0) €
R™ where the m-th position is 1 and other positions are 0. Then, the partial
derivative Op, f(z) is defined as

o) = iy 104 Fem) 1)

(11)
The gradient V f(z) is defined as

Remark on the notation: the meaning of 9, f(z,y,...) as 01 f(x,y,...) and
various historical contexts on the messiness.

Example 2.21. Let f(z,y,2) = zyz, then Vf(z,y,2) = (yz, zz, xy)
Exercise 2.22. Consider f : R — R where

F(,05) = (0V/2m) L exp (—é ( ‘”)2) (13)

g

e Compute Vlog(f(p,0))
e Try computing V f(u, o) and discuss the value of taking logarithm.

2.3 Introduction to Optimisation
Definition 2.23.
e Let X C R, then min(X) =cif c <z Vre X and that c € X.

o Let f: A— R, then min(f(A)) =cifec < f(z) Vr € A and that Jy € A
such that f(y) = c¢. In addition, argmin(f) = {z € A : f(z) = c}.

Example 2.24. Let f(z) = 22, then min(f) = 0 and argmin(f) = {0}
Exercise 2.25.

e State the definition of max(X) for X C R and state the definition of
max(f(A)) = ¢ and argmax(f) for f: A - R

e Prove that
argmin(f) = S <= argmax(—f) =S

e Let f: A— (0,00). Prove that
argmin(f) =S <= argmin(log(f)) =S
Exercise 2.26. Reflect the discussion of Exercise 2.22

Example 2.27. Let f(z) take the formulation as[Equation 8 Then argmin(f) =
{u} and min(f) = (ov/2m) 7!

Shttps://en.wikipedia.org/wiki/Notation_for_differentiation
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2.4 The (R",||-]|,) space
Definition 2.28. Let x € R". Write z = (21,22, ...,2,). Define || - ||, : R" —

[0, 00) by
T (Z |xi|p>
i=1

Exercise 2.29.
e Discuss the possible notion of || - ||o
e Prove the triangle inequality: ||z + y||, < ||z|l, + ||yll, Y,y

e Let f,g : A — R where g(x) := ||f(z)||,. Consider the following state-
ment:
argmin(g) = S <= argmin(f) =95

For what kind of (4, p) would the statement be true?
Lemma 2.2 (Parallelogram Law). For any v,w € R",
20Tw = [[o]]* + [Jw]* — [Jv — w||? (14)
Definition 2.30.
e A ball in (R",]|-||,) is defined as B(x;r) :={y € R" : ||z — y||, < r}
e A local minimiser for f : R"™ — R is x € R™ if 3r > 0 such that

Yy € B(w;r), f(y) > f(z) (15)

e A global minimiser for f: R" — R is x if 2 € argmin(Jf)
Exercise 2.31.

e State the definition of local maximiser and global maximiser.

e Draw a ball in (R* || - [|2), (R, || - ||1), and (R?,]] - ||oo)-

e Define a function where all local minimsers are global minimisers.

e Define a function where some but not all local minimsers are global min-
imsers.

e Define a function where there are no global minimiser.

2.5 Optimisation in R? - R

Definition 2.32. A set A is convex if Va,y € A,t € [0, 1], we have tx+(1—t)y €
A.

A function f: A — R is convex if A is a convex set and

FOz+ (1 =Ny) <Af(x)+ (1 =N f(y) Vo,y € Aand X € 0,1] (16)



Lemma 2.3 (First Order Condition of Convexity). Let f : R" — R be once
differentiable. Then, f is convex if and only if

fy) > fx)+ V@) (y—=z) Vo,yeR" (17)

Theorem 2.4 (Gradient Property of optimisation). Suppose f : RY = R s
convex and differentiable, x € RY.
IfVf(x) =0, then x is a global minimiser.

Exercise 2.33.
e Use Lemma [2.3] to prove
e Characterise the gradient property for a maximiser using
e Give an example where applies.
e Give an example where does not apply.
At the end of could we say x is the unique global minimiser?

2.6 Gradient Methods and Gradient Descent

In the last part, we review the bread-and-butter framework for Machine Learn-
ing: Gradient Descent (GD). We take p = 2 for the norm, and consider Lipschitz-
continuous functions:

Definition 2.34. Let B > 0 be a constant. f: R? — R is B-Lipschitz contin-
uous if

[f(x) = f(y)| < Bllz —y|| Va,y € R?
Example 2.35.

e f:[0,+00)? — R defined by z + , /I1;e(q @i is not Lipschitz continuous.
e || -||p is Lipschitz continuous for all p > 1.

Lemma 2.5. Let f be once differentiable. f is B-Lipschitz if and only if
IVf(z)|| < B Vo eR

For what follows, we consider the problem of finding argmin(f) where f :
R?Y — R is convex and once differentiable. We assume the argmin(f) is a
singleton and hence write 2* to be the element in argmin(f).

Definition 2.36. A Gradient Descent Algorithm is made of an initial point
zo € R? and a step size v > 0. The sequence (zn)nen follows

Tyl = T — ’YVf(l't) vVt eN (18)

Theorem 2.6 (Gradient Descent for Lipschitz convex functions). Let f : R? —
R be convez, differentiable, and B-Lipschitz. Suppose ||xg — z*|| < R and v :=
R(BVT)™", then

T Y f(a) - fl@*) < RBT% (19)

te[T)



Exercise 2.37.

e Why did we not say x;y — x*7
t—o0

e Consider f : R? — R as per defined in Exercise [2.22} is [Theorem 2.6|
applicable?

e Prove the using Lemma [2.5] Lemma 2.2 and Lemma [2.3]

e Show the upper bound in e [Theorem 2.6] with a general v > 0, and hence
discuss the appropriateness of the chosen ~.




3 Statistics and motivation of Machine Learning

3.1 Gaussian distribution

Definition 3.1. A random variable X € R has a probability density function
(pdf) ¢ : R — [0,00) and cumulative density function (cdf) ® : R — [0,1] if
Vr,y € R,

O(x) =P[X < z] (20)
Yy
[ ot =pia < x <y (21)
Definition 3.2. A real-valued random variable X follows Gaussian distribution

with mean p and standard deviation o if the probability density function of X
is defined by

F (@ 1,0) = (ov/3) " exp (—; (= “)) (22)

We annotate X ~ N(u,0?).

Definition 3.3. Let f : R — R and X a real-valued random variable, define
the expectation

B0 = [ fa)ods (23)
zeR
and variance
VIf(X)] = E[f(X)*] - (E[f(X)])? (24)
Exercise 3.4. Let X ~ N(u,0?), k # 0, what is the distribution of kX?

Before we embark on statistical models, we need to understand higher di-
mensional distributions and the crucial notion of independence.

Definition 3.5. A random variable X = (X3,..., X,,) € R" has a probability
density function (pdf) ¢ : R™ — [0,00) and cumulative density function (cdf)
¢ :R" — [0,1] if Vo = (21, ...,z,) € R"; A CR",

O(z) =P[X; <21,y Xpy < ] (25)

é(t)dt =P[X € A] (26)

Definition 3.6. A pair of random variables (X, Y") is independent if ¢ x y (z,y) =
ox(x)py (y) where ¢x y is the pdf of the random variable (X,Y) and ¢x, ¢y
are the pdf of X and Y respectively.

Definition 3.7. Let (X,Y) be a pair of random variables. The covariance is
defined as
Cov(X,Y) = E[(X - E[X])(Y - E[Y])]

Lemma 3.1. If (X,Y) are independent, then Cov(X,Y) =0

10



Definition 3.8. Let X € R?. X follows Gaussian distribution with mean
1 € R? and standard deviation ¥ € R¥™? if the probability density function of
X is defined by

S o) = (3] (2m) %) exp (—; (CRDCE m)) (27)

We annotate X ~ N(u,X) in this case.

Lemma 3.2. Using the above notations, and for any m € RY, A e R, we
have m + AX ~ N(m + Au, ALAT)

Warning: to prove the above lemma, you will need to use some linear algebra,
which we don’t have time to cover.

Lemma 3.3. If X is Gaussian and that X = (X3, X2) with Cov(X1, X3) =0,
then X1 and X5 are independent.

Exercise 3.9. Let X = (X1,...,X,,) € R" and let X; ~ N(u,0) Vi.
e Write down the distribution of X.
e Induce the distribution of ;) Xi

Definition 3.10. Consider random variables X = (X3,..,X,) e R" and Y €
R™. Fix an arbitrary constant y € R™. The conditional variable X|Y = y has
a probability density function (pdf) ¢ : R™ — [0,00) and cumulative density
function (cdf) ® : R™ — [0,1] if Vo = (21, ...,2z,) € R", A C R",

(I)(‘T) :]P)[Xl <., X < In‘Y = y] (28)

o(t)dt =P[X € A]Y =y (29)
teA

Exercise 3.11. Let px, py, px,y, Px|y—y be the densities of X and Y, joint
density of (X,Y") and conditional density of X|Y = y respectively.

° pX,Y(%Z/) =py(y) x pX\Y:y(‘T) Y,y
e If XY are independent, then px|y—,(z) = px(z) Va,y

e If Y = f(X) +¢ and € ~ N(0,0?%) is independent of X, then Y|X ~
N(f(X),0%)

e IfY € {0,1}, and denote ¢ := py (0), then py|x—(y) = f(z)(gpx|v=o(x)+
(1 = q@)px|y=1(z)). Prove this and state what is f(z).

Remark: it is not a good practice to forget discussing corner cases such as
when a probability becomes 0.
We are now in a good shape to talk about data.

11



3.2 Linear models

We are interested in analysing data composed of observations paired in the
following way: (z1,%1), ..., (Tn,Yn) where x; € R™ and y; € R for all j € [n].
In this subsection, we assume n to be large, and that we don’t consider small
n (for instance, if we require at least n > 3 somewhere, we will do so without
saying).

In linear model, we assume y; = 21 8 +¢; Vi and that ¢; (usually known as
the noise) is drawn identically and independently (iid) from N (0, 0?) where o2
is unknown. This is written as g; ~ iidN (0, 0?)

Exercise 3.12. Discuss what would happen if the noise is not drawn iid.

Definition 3.13. In the ordinary least square (OLS) framework, we are in-
terested in minimising the sum of squared residuals from a fitted model, in
particular, minimise

FB) = (yi — 2! B) (30)

i€[n]
Exercise 3.14.
e Let m =1 and z; =1 Vj. Find argmin(f).
e Let m =2 and z; = (1, z;) Vj. Find argmin(f).

To achieve notational ease for larger m, we introduce the design matrix X
defined as

i
oy
X:=|"2]ermm (31)
xf
Then note Y := (y1, ..., yn) € R" and we can re-write [Equation 30| as
fB) =Y - X85 (32)

Theorem 3.4 (OLS solution). Suppose Rank(X) =m < n, then argmin(f) =
{BOLSY where
pOLS = (XTX)T XY (33)

Corollary 3.5. f°L5|X ~ N(B,02(XTX)™1)

3.3 Likelihood methods

Another statistical estimation method is known as the maximum likelihood
estimation (MLE) method. Let p; be the probability density function of data
yilxi, which is N(z] 3,0?%), then the joint density is Hie[n] p;. We denote such
an object as the likelihood of our data, noted I(3,0%; X,Y) = 1(6; D)

Definition 3.15. Let £: © — R be thAe likelihood function. The MLE concerns
with maximising £(6; D). We denote §ML¥ as the maximiser

Exercise 3.16. Why are we concerned with £(6; D) instead of £(|D)? Discuss.

4Tt is common that this is the unique maximiser.

12



Exercise 3.17. Show that for linear model,

log(£(6; D)) = ~ S 1og(0?) — 5 3 (v — a7 5

1€[n]

And hence prove that §MLE = (BMLE,62’MLE) where fMLE — gOLS

3.4 Classification Problem and Motivation of Neural Net-
works

In we investigated the problem wherein we fit a function y =

2T amongst the data to minimise the squared residuals. Here, we consider
classification problem where y € Y and |Y| =k € N>,.

In a binary classification model, we have data { (2, y;) }ie[n) and y; € {—1,1}.
E| A loss function takes the predicted value 7 against the true value as observed
in data noted y and outputs a real value.

Example 3.18 (Mean Squared Error). I(y, ) = (y — 9)?

Example 3.19 (Classification Problem: correct count loss).
1:{-1,1} x {-1,1} — {0,1}

defined by I(y, ) = max(—yg,0)

Exercise 3.20. Discuss the intuition behind the correct count loss.

Exercise 3.21. Discuss the problem of linear regression in light of classification
problem.

Definition 3.22. A threshold function p : R — R is defined as p(z) = 1[z > 0]

Definition 3.23 (XOR Problem). Let there be data (z1,y1), ..., (24,¥4) where
z; € R%,y; € R for all i € [4]. In particular:

(z1,91) =((=1,-1), -1)
(z2,92) =((—1,1),1)
(z3,y3) =((1,-1),1)
(za,94) =((1,1),-1)

Let f be a prediction function where f : R? — R, we use a threshold function to
harmonise the prediction, in particular, we consider the loss of this prediction
function as

L(f) = Z max(—y;g(f(z:)),0) (34)
i€[4]
9(f(zi)) = 1[f(z;) = 0] — L[f(2;) < O] Vi (35)

Exercise 3.24. Discuss the rationale behind [Equation 34| and [Equation 35}

5Tt is more common to have y; € {0,1}. We use —1 here for ease of the loss function
construction.

13



Theorem 3.6 (Failure of linear functions in classification problems). Let FX"¢" =
{f(z) =2TB: 3 € R?}, then

Theorem 3.7 (Success of NN in classification problems). Consider a set of
two-layer Neural Networks (NN). Let

N(p) = {f(l‘) = p(wlx + bl)T’LUQ + by i wy € R2X2,w2, b, € RQ, by € R} (36)
Then

min L(f)=0 37

i 1(7) 7

A proof to the above theorem is available at my ST456 (LSE) lecture note:
https://parleyyang.github.io/ST456/index.html

14
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4 Computing experiments and basic Machine
Learning

4.1 The basics of programming: an Object-oriented pro-
gramming (OOP) viewpoint

Object-oriented programming (OOP) is a programming paradigm based on the
concept of "objects”, which can contain data and code: data in the form of
attributes or properties, and code, in the form of methods. The following is an
example of OOP

class Book:
def __init__(self, title, quantity, author, price):
self.title = title
self.quantity = quantity
self.author = author
self.price = price

def __repr__(self):
return f"Book: {self.title}, Quantity: {self.quantity}, \
Author: {self.author}, Price: {self.pricel}"

Exercise 4.1. What would be the printed output if we have code

bookl = Book(’Book 1’, 12, ’Author 1’, 120)
print (book1)

Exercise 4.2. Conceptualise an OLS estimation procedure (Equation 33| us-

ing OOP in Python. You can use standard packages such as Pandas, or just
conceptualise using pseudo code.

In what follows, we proceed with Python programming on Google Colab and
/ or equivalent notebooks to code for exercises. H stands for computation by
hand and C stands for coding exercise.

Exercise 4.3.

e (H) Consider data (1,2),(2,4),(3,4), (4,5), (5,6) where the first entry is
the value of x and the second entry is the value of y. Design the OLS
regression with constant and compute the OLS estimator.

e (C) Input the data, and then write a function to compute the OLS esti-
mator.

e (C) Use statsmodels.regression package to estimate the OLS estima-
tor.

6h‘ctps ://www.statsmodels.org/dev/generated/statsmodels.regression.linear_
model.OLS.html

15
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4.2 Optimisation in action

Exercise 4.4.

e (H) Recall Definition and various exercises before that. Design a GD
method for OLS estimation with large n and m = 2.

e (C) Code your function. Consider thoroughly how you would like to stop
the for loop.

e (C) Use the data we had in Exercise and run your function. Discuss
the result.

4.3 The principle of Machine Learning

We continue the set up from [subsection 3.2 and [subsection 3.4, A more gener-
alised notion of the purpose of Machine Learning for Statistical purposes is to
reduce Risks.

Definition 4.5. Consider an input space X and an output space Y, often Y = R.
We denote the random variables X and Y as the input and output of a decision
functiorﬂ h:X — Y. With a loss function [ : Y X Y — R, we define the risks of
a decision function as

R(h) = E[l(h(X),Y)] (38)

Let H be a set of functions mapping X — Y, the principle of Machine Learning
is to minimise the risks, that is, to find argmin, 5z R(h)

Exercise 4.6. Let Y = R.

e When I(yo,y1) = (yo—y1)?, show that argmin, . ; R(h) = argmin, . 5 E[(E[Y|X]—
h(X))?] and hence if the function h™9(z) = E[Y|X = z] € H, then
argming, . g R(h) = h"°?

e When [(yo,y1) = |yo — y1|, what would argmin, .z R(h) be reduced to?

Definition 4.7. In empirical risk minimisation, we are given a dataset (z1,y1), ..., (Zn, Yn ),
and the empirical risk of a decision function A is given by

R(h) =n=" Y U(h(z:), 1) (39)
i€[n]

From now on, we assume Y = R and I(yo,y1) = (yo — y1)?. This is also
known as the ordinary least squared settings.

Exercise 4.8. In we assumed n to be sufficiently large. Fix n.
What would happen when m > n? What would happen when m — oo?

7Some may say this as a hypothesis function, but that may be confused with the notion of
hypothesis testing. In regression setting, this could be noted as regression function.

16



4.4 Penalisation

Definition 4.9. Let A > 0. A ridge regression with parameter \ is a minimi-
sation problem where we minimise

FB) =" (i — =7 B)* + A|BII3 (40)

i€[n]
instead of
Exercise 4.10.

e (H) Construct an experiment where m = 80 and n = 30 with the data
simulated by y; = 3z1,; + 225, + 229, + &; Vi € [n]

e (C) Code this experiment.

e (C) Use sklearn.linear model packagelﬂto estimate the ridge regression.
Try different A and comment on the result.

e (H) Analyse the behaviour of argmingcgm f(3) as A — 0 and A — oco.

Shttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.
html
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5 More on infinity and towards Modern Ma-
chine Learning

Teaching note for 2022: due to time pressure and intention for students to self-

study, the delivery of will be more qualitative and speedy —

prior familiarisation of the definitions and examples are essential for students.
Students are advised to complete Exercise [5.10] independently to demonstrate
their understanding, as per prescribed in the texts there.

5.1 Normed vector space

Definition 5.1. A vector space V over scalar space R is a set V along with
notions of vector additions + and scalar multiplication - such that

l.z4+yeV Ve,yeV
2. Annotate Ax ;= A -z, then Az € V Vx eV, AeR

3. 30 € V such that z + 0 =2 Va € V and 1 € R remains a scalar identity
operation: lx =zl =2 Vx eV

4. z+y=y+zanda+ (y+z2)=(x+y)+zVr,y,z€V
5. a(fx +0y) = (af)r+ (ab)y Vr,y €V and a € R

Definition 5.2. A subspace of U in V is a set U C V such that Vz,y € U and
A €R, we have A(z +y) € U

Example 5.3. Fix an arbitrary y € R™. The set
X={zecR": 2Ty =0}
is a subspace of R". Visualise this set in the case of n =2 and n = 3.

Definition 5.4. A norm on a vector space V is a map ||-|| : V' — [0, +00) such
that

1. ||z]| =0 <= z=0Vz €V
2. [|Az|| = M||z]] Yz eV and A eR
3. o+ yll < lloll + Iyl o,y eV
A normed vector space is then a pair (V|| ||)
Definition 5.5. Let V be a vector space and E C V with |E| =k € N.

e The span of F is defined as

span(E) = {Z aje; :n€Nye; € B a; € RVj}

j€ln]
e [ is linearly independent if for any n € N, a; € R and e; € E,

Z aje; =0 = a; =0Vj € [n]
j€ln]
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e E is a Hamel basis for V if it is linearly independent and span(E) = V.We
say V to be finite dimensional and write dim(V') = k in this case. If V
does not have a Hamel basis, we say V to be infinite dimensional.

Example 5.6. (R",||-||,) is a finite dimensional normed vector space

Definition 5.7. Let (V,]|-||) be a normed vector space. A ball in this space is
defined as
Blz,r) ={yeV:|lz—yl| <r}

Definition 5.8. Let f: (V,]||-||) = R. f is continuous at z if
Ve >0, 36 > 0 such that Vy € B(z,9),|f(y) — f(x)| <e (41)

We say f is continuous on A C V' if f is continuous at all x € A.

Definition 5.9. Let a < b and p > 1. Denote C([a,b]) to be the set of all

continuous functions f : [a,b] — R. Denote || - ||z : C([a,b]) — [0, +00) to be
a function )
b P

I fllr = ( / f<x>|pdx> (42)

Exercise 5.10. (C([0,1]),]|||z:) is an infinite dimensional normed vector space.

To do so, you need to first show C([0, 1]) to be a vector space: make sure you
defined the fundamental rules of vector additions and scalar multiplications and
show that Definition [5.1]is satisfied. Then, show that it is infinite dimensional
— this can be done by proving by contradiction. At last, it remains to show
[| - ||z1 to be a norm on such space.

Example 5.11. The set

X={f:c(01): / f(x)dz = 0}

is a subspace of C([0,1]).
Definition 5.12. Let p > 1,
o= {z = (2;)52, 12, €R, Y |a;|P < o0}
j=1

Define || - ||¢e : £F — [0, +00) to be a function

P

l[eller = | Dl P (43)
j=1

Example 5.13. (¢7,]| - ||¢») is an infinite dimensional normed vector space.

Remark: To prove the above example, one needs Minkowski inequality.
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5.2 Disorder in infinity: lack of completion
Throughout this subsection, we consider a normed vector space (V.|| - ||).
Definition 5.14.

e A sequence (x,)nen converges to x € V if

Ve > 0,3N € N such that z,, € B(z,e) Vn > N (44)

e A sequence (xy)nen is Cauchy if

Ve > 0,3N € N such that ||z, —zn|| <eVn,m >N (45)

e (V,||-|]) is complete if every Cauchy sequence converges. Otherwise (V||
||) is incomplete.

Example 5.15. (R,]|-|) is complete. This is due to Bolzano—Weierstrass theo-
rem.

Exercise 5.16. Show that (R?, || - [|2) is complete.
Exercise 5.17. Show that (C([0,1]),]|-||z1) is incomplete.

Exercise 5.18. Show that (¢7,]] - |[¢») is complete.

5.3 Order in infinity: Hilbert space, separability, and ¢*

By the end of this subsection, we would like to appreciate the following the-
orem, which is a very strong characterisation to relate Hilbert space into a
well-established space.

Theorem 5.1. Any infinite-dimensional separable Hilbert space H is isometri-
cally isomorphic to (£2,]| - ||¢)

We first need to understand what is a Hilbert space and what does it mean
by isometrically isomorphic — in particular, why is that celebrated in infinite
dimensional spaces?

Definition 5.19. An inner product is a map on vector space V, written as
(,):V xV — R such that Vz,y,z € V and Va € R,

1. (z,z) > 0 with equality if and only if x =0
2. (z+y,2) = (z,2) + (y,2)
3. {ax,y) = alz,y)
4. (2,y) = (y,2)
Example 5.20. Let V = (2, consider (,) : V x V — R defined by

o0
(@,y) = xjy; (46)
j=1
Then we can show this is an inner product.
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Exercise 5.21. Define an inner product on R"™. Show that it is an inner prod-
uct. Is this definition unique?

Exercise 5.22. Show that when we define || - || : V — oo by ||z]| :== (x,z)2
Then (V.|| - ||) becomes a normed vector space. We call this norm the induced
norm.

Definition 5.23. A Hilbert space H is an inner-product space for which it is
complete with respect to the induced norm.

Definition 5.24.
e A function f: X — Y is an injection if

Va,be X, f(a)=f(b) = a=0

A function f : X — Y is a surjection if Vy € Y, 3 € X such that
flx)=y.

A function f: X — Y is a bijection if it is both injective and bijective.

A function f: X — Y is linear if
Va,BeR,z,y € X, flax+ By) =af(z)+ Bf(y)
A function f: (X,||-|Ix) = (Y,]| - ||y) is an isometry if
Ve e X, [[f(@)lly = |lx]lx

e Two normed vector spaces (X, || ||x), (Y,||-]|y) are isometrically isomor-
phic if there exists a bijective linear isometry f: X — Y.

Exercise 5.25. Show that C is isometrically isomorphic to R?. Emphasise how
you would define the norm and the isometry.

Lemma 5.2. Let V be a finite-dimensional vector space. Then there exists a
norm || - || such that (V|| -||) is isometrically isomorphic to (R",]|| - ||2) where
n = dim(V).

In relation to appreciating we need to introduce further nota-
tions and concepts to assist infinite dimensional analysis.

Definition 5.26.

e A non-empty set A is countable if there exists a surjection from N to A.

A set A C (V,]|-]]) is closed if whenever {x,}neny C A with z,, —

n—oo

it follows that o € A. The closure of A, noted A, is the intersection of all
closed subsets of V' that contain A.

Aset AC (V,||-]])is dense in V if A=V.

e A normed vector spaceﬂis separable if it contains a countable dense subset.
Example 5.27. The set of Euclidean basis vector {e;};en is countable.
Exercise 5.28. (¢7,|| - ||¢r) is separable. Prove.

We are now in a position to appreciate [[’heorem 5.1

9There is a more general definition related to metric space, which we are not getting into
as we intend to simplify the notations.
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5.4 Hilbert space analysis

Further to the characterisation of separable Hilbert space, we return to a general
Hilbert space and study one more property before applying to Machine Learning.

Definition 5.29. Let H be a Hilbert space. Let X C H. Define the orthogonal
complement of X as

Xt ={ueH: (uz)=0Vrec X}

Theorem 5.3 (Orthogonal projection in Hilbert space). Let U be a closed
linear subspace of a Hilbert space H, then for any x € H, there exists uniquely
weUv €U such that x = u +v

Corollary 5.4. Using the above notation, ||z||? = ||ul|® + ||v||?.

Exercise 5.30. Use to prove Corollary

If time permits, we should be further entertained by some basic results on
dual spaces:

Definition 5.31. Let (V,|| - ||v) be a normed vector space. We write

V*={f:V = R: fislinear and sup |f(z)| < oo}

[|z||=1
We call V* the dual space of V', and equip it with the nornﬂ

I[fllv+ = H81‘1|131 |f(z)] VfeV (47)

Exercise 5.32. Show that || - ||y« is a norm on V*.

Lemma 5.5 (Cauchy-Schwarz inequality). Let H be a Hilbert space, recall that
[| - 1| is induced by its norm. Then

Ve,y e H, (z,y) <|lzl| [yl (48)

Theorem 5.6. Let H be a Hilbert space andy € H. Then the map fy, : H - R
defined by x — (x,y) is an element of H*. In particular, ||fy||a- = ||yl|a

Further (optional) reading: Riesz representation theorem and reflexivity
analysis.

0z =supAif z>a Va € A and that Ve > 0, there exists a, € A such that a, >p—¢
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5.5 Applications to Machine Learning
Definition 5.33. Let X be the input space. A function k : X xX — R is a
kernel if there exists a Hilbert space H and a map ¢ : X — H such that

V.%‘,.%‘/ € X, k($7.');‘/) = <¢(l‘), ¢<ﬂ;‘l)> (49)

Remark: there is a few other equivalent definitions on kernel — they are
equivalent due to Riesz representation theorem, or simpler stated

Example 5.34. Let X = R with ¢(z) = z, then (z,y) is a kernel.

Definition 5.35. Let H be a Hilbert space of functions f : X — R. A function
k: X x X — R is called a reproducing kernel of H if

Ve eX, k,=k(,z)€H (50)

and
Vo € X,Vf € H,(f,k(-,x)) = f(z) (51)

If H has a reproducing kernel, it is called a reproducing kernel Hilbert space
(RKHS).

Exercise 5.36. A reproducing kernel is a kernel. Prove.

Hint of the exercise: is not directly related, though may moti-
vate the constructive proof.

Recall the setting in Definition [I.7} we are now in a position to state and
prove the Representer theorem in kernel machine learning. H below always
stands for a RKHS.

Theorem 5.7 (Representer Theorem). Let 2 : [0,00) — R be increasing |E| If

H = argmin R(f) + Q(||f[1*)
feH
is not empty, then If* € H such that f* = Zie[n] a;k(-,x;) for some constants
a;. Furthermore, if Q : [0,00) — R is strictly increasingﬁ then Vf € H, 3
constants a; such that f = Zie[n] a;k(-,x;).

Hint of the proof: construct a projection of an arbitrary member of H onto
the span of some basis (recall Definition [5.5]) we are after. Corollary [5.4] would
be useful at some stage as well.

HThat is, Vz,y € [0,00) such that = > y, we have Q(x) > Q(y)
12That is, V,y € [0,00) such that = > y, we have Q(z) > Q(y)
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